International Journal of Pharma Growth Research Review

Cell-Free Biotechnology in Clinical Therapeutics: Protein Synthesis Platforms for Rapid Drug and Vaccine Development

Obinna CJ 1, Francis CO 2, Ireoluwaotomiwa AO 3, Ikenna KM 4, Laura TA 5, Godfrey EO 6, Khadijat OO 7, Muhammad IA 8, Habibullahi Usman U 9, Obaro PI 10

- ^{1, 6} Department of Biochemistry, University of Benin, Nigeria
- ² Department of Biomedical Engineering, Afe Babalola University, Ekiti, Nigeria
- ³ College of Medicine and Surgery, Siberian State Medical University, Russia
- ⁴ Department of Biotechnology, University of Bedfordshire, United Kingdom
- ⁵ Department of Biochemistry, Abia State University, Nigeria
- ⁷ Department of Biochemistry, Obafemi Awolowo University, Nigeria
- ⁸ Department of Molecular Biology, University of Bergen, Norway
- ⁹ Veterinary Medicine, Ahmadu Bello University, Nigeria
- ¹⁰ Public Health Administration, First Moscow State University, Russia
- * Corresponding Author: Obinna CJ

Article Info

ISSN (online): 3049-0421

Volume: 02 Issue: 05

September – October 2025 Received: 03-07-2025

Accepted: 05-08-2025 **Published:** 04-09-2025

Page No: 15-24

Abstract

Platforms for cell-free protein synthesis (CFPS) are becoming revolutionary instruments for quick vaccine and treatment development, especially in situations requiring quick response like pandemics. The molecular underpinnings of CFPS are examined in this review, which also highlights energy regeneration techniques and compares extract-based and fully synthetic systems. We go over how CFPS deals and manages the drawbacks of conventional bioreactors to produce proteins that would otherwise be impossible to obtain. The article also assesses on-demand vaccine production, including customized formulations, antigen screening, and mRNA prototyping. Particularly in areas with limited resources, CFPS is positioned for distributed, point-of-care biomanufacturing through integration with portable microfluidic equipment. In order to establish CFPS as a paradigm change for therapeutic democratization and global health preparation, we conclude by addressing important concerns of stability, storage, and regulatory adoption.

DOI: https://doi.org/10.54660/IJPGRR.2025.2.5.15-24

Keywords: Cell-Free Protein Synthesis, Clinical Therapeutics, Rapid Drug Development, Vaccine Production

1. Introduction: Cell-Free Systems (CFS) as Emerging Tools for Urgent Therapeutics and Pandemic Response

Cell-free systems (CFS) are *in vitro* platforms that have the capability of allowing genetic material to be transcribed and translated (the central dogma) without the use of living cells. With the limitations associated with traditional biomanufacturing techniques, notably with regard to efficiency, scalability, and adaptability, which have been brought to light by the growing global health threats posed by infectious diseases and pandemics. Because cell-free systems (CFS) circumvent these limitations of cell viability and reallocate metabolic resources directly toward product synthesis, CFS have become a potent platform for biomanufacturing. Compared with traditional cell-based systems, this open nature allows for the production of proteins (such antigen and enzymes), RNA therapies, and other biomolecules with greater flexibility, quicker responses, and less complexity [1]. The rapid expression of these proteins without the need for living cells offers a way to meet urgent therapeutic demands where scalability and timing are crucial.

In recent years, cell-free protein synthesis has been used to manufacture substances with therapeutic interest such as vaccines, oncolytic proteins, antibodies, and antimicrobial peptides; many of these products can be produced within a short period of time

instead of a longer duration of time, weeks ^[2, 3]. The CFS as a tool have allowed for the synthesis of complex proteins that require correct folding and disulfide bond formation and thus expanded their application in the development of therapeutics for immediate use ^[4]. Apart from protein synthesis, cell-free systems can be lyophilized for long-term storage and then rehydrated to create proteins when needed, making them an effective tool for field-deployable and decentralized biomanufacturing ^[1].

The COVID-19 pandemic made it clear how important the cell-free system is: during this period, cell-free systems were utilized for the development of diagnostics, vaccine prototyping, and therapeutic proteins under conditions of global supply chain disruption ^[5, 6]. For pandemic preparedness, CFS is a vital tool due to its speed, mobility, and scalability. The use of microfluidics has also made it possible for portable point-of-care devices to produce synthetic proteins in a matter of hours, facilitating prompt reactions to new epidemics ^[7].

Combining their ability to produce quickly on demand, their stability in lyophilized form, and their versatility with different biomolecules, cell-free systems are well positioned to satisfy urgent therapeutic demands while also enhancing readiness for potential pandemics. Their emergence represents a paradigm shift in biomanufacturing, bridging the gap between laboratory innovation and real-world emergency response.

2. Biochemical Architecture of Cell-Free Protein Synthesis (CFPS)

2.1. Extract-Based Systems versus PURE and Fully Synthetic Transcription—Translation Systems

As the technical foundation of synthetic biology, cell-free protein synthesis (CFPS) systems enable the transcription and translation process in an open *in vitro* environment without the need for a whole living cell. In recent years, CFPS systems have been broadly classified into three categories: complex crude extract-based systems, biochemically defined systems and fully synthetic transcription-translation systems. All of which offer a high degree of bioengineering flexibility [8, 9]

Among these, extract-based CFPS systems are the most widely utilized. In order to extract the biochemical components that are needed for energy production, transcription, and translation, it breaks down and processes cells to eliminate insoluble materials. Theoretically, almost every species can satisfy the prerequisites for constructing a crude extract system from cells. A number of CFPS systems, including the NEBExpress Cell-free E. coli Protein Synthesis System, 1-Step Human *In vitro* Protein Expression Kits, and ALiCE® Mini Kit, have been well-developed and commercialized using various cell crude extracts. *E. coli* is now the most extensively researched CFPS system, and cell extracts can be classified as either prokaryotic or eukaryotic

based on many sources [8].

Even while extract-based CFPS systems offer special benefits such high protein production, toxin tolerance, long-term stability through freeze-drying, and the possibility to avoid time-consuming gene cloning and culture procedures, they still have a lot of drawbacks. These include systemic uncertainties and instabilities, with notable variations noted among batches. Furthermore, a significant constraint is component uncertainty, since translation productivity is adversely affected by nucleases, ribonucleases and proteases that cannot be eliminated [8, 10].

Researchers created a biochemically defined system, most notably is the Protein Synthesis Using Recombinant Elements (PURE) system, to address these issues. The PURE system, which was initially developed in 2001 by the Shimizu group, is made up of purified components needed for transcription and translation. All additives are fully known, and the concentration can be controlled. Compared to extract-based systems, the PURE system offers three distinct advantages: It is stable and deterministic due to its

- 1. Precise composition, which includes 36 purified proteins, tRNAs, ribosome, and other necessary components without polluting proteases.
- 2. Flexibility, as each element's composition can be adjusted to achieve maximum protein expression based on the needs of the experiment.
- 3. Ease of genetic code expansion and translational machinery manipulation [8].

Nevertheless, the PURE system has drawbacks in spite of these advantages. While the PURE system is more costly ($\$0.6-2/\mu L$) and offers lower protein yields (albeit with less noise interference), extract-based systems are often more economical and can reach high protein yields. The PURE system is especially useful for fundamental biochemical research, prototyping, unnatural amino acid incorporation, biosensing, and applications needing deterministic control, while extract-based CFPS is more adaptable for mass manufacturing as a result [8].

Beyond these two well-established categories, scientists are working to create a fully synthetic transcription-translation system (FTTS). By using chemically manufactured or recombinantly created components, FTTS seeks to reconstruct the full transcriptional and translational machinery, in contrast to extract-based or biochemically defined systems that depend on components obtained from cells. Synthetic ribosomes, tRNAs, and enzymes that can facilitate the extension of genetic code and the addition of non-natural amino acids are examples of this. Although still in the experimental stage, FTTS represent the frontier of CFPS, offering unprecedented control over system composition and opening possibilities for building synthetic cells and programmable protein factories [9, 11].

Fully Synthetic Transcription-Translation Feature **Extract-Based Systems PURE System** System Reconstituted from purified Chemically defined system with fully Derived from crude cell lysates (e.g., E. Source components of E. coli transcriptioncoli, wheat germ, rabbit reticulocyte) synthetic macromolecules translation machinery Contains endogenous enzymes, Fully controlled with artificial enzymes, Complexity ribosomes, tRNAs, and other cellular Simplified, minimal, and well-defined ribosomes, and translation factors components High precision; low background Maximal control; complete absence of High protein yield; cost-effective; Advantages activity; customizable for noncanonical cellular background; future potential for suitable for large-scale synthesis amino acids synthetic biology Batch variability; presence of Expensive; lower yields than crude Still under development; technically Limitations extracts nucleases/proteases; limited control challenging; costly Rapid prototyping, vaccine design, Site-specific labeling, structural Synthetic biology, origin-of-life studies, Applications programmable biomanufacturing protein engineering biology, therapeutic protein design

Table 2.1: Comparison of Extract-Based, PURE, and Fully Synthetic Transcription—Translation Systems [25]

2.2. Energy Regeneration and Metabolic Supplementation Strategies

Effective protein synthesis in cell-free protein synthesis (CFPS) requires a continuous and sufficient energy supply to drive transcription and translation ^[10]. Therefore, maintaining long-term and effective reactions depends on energy regeneration.

To initiate the translation response in the CFPS system, phosphoenolpyruvate (PEP) can be employed as an energy regeneration mechanism. It significantly affected the *E. Coli* and *V. natriegens* CFPS system's protein expression, and the highest level of protein synthesis varied by dozens of times [10]

Beyond PEP, other high-energy donors are also applicable. In the PURE system, it composition is defined, including purified proteins, ribosome, energy, and other essential factors. These essential factors may include enzymes for the energy cycle and regeneration are specifically (4 µg/mL creatine kinase, 3 µg/mL myokinase, 1.1 µg/mL nucleosidediphosphate kinase, 4500 U/mL methionyl-tRNAformyltransferase, and 2 U/mL pyrophosphatase). Energy and additional component buffers, such as 2 mM ATP, 2 mM GTP, 1 mM CTP, 1 mM UTP, 20 mM creatine phosphate, and 50 mM HEPES-KOH pH 7, are also necessary to sustain the PURE system's processes [8]. However, careful balance is needed since magnesium ion affects the ribosome function, but it is difficult to control its concentration because it can be chelated by negatively charged molecules, such as NTPs, creatine phosphate, and pyrophosphate [8].

Metabolic supplement is also possible in cell-free systems due to their open nature. Because CFS is open, it makes sense to put it along with cell lysates, purified proteins, energy sources (like ATP), amino acids, other substrates (such modified tRNAs and membrane mimics), and circular or linear RNA or DNA. Recent advances in systems that can use more cost-effective energy sources and high-throughput preparation methods have made CFS extremely accessible [12, 13.14, 15, 16]

Certain key substrates, including as cofactors, energy substrates, salts, and amino acids, are necessary for protein synthesis in extract-based systems from CFPS systems [17]. Moreover, the addition of purified tRNA stimulates the translation process, and the addition of NAD⁺ and CoA activates the pathway from pyruvate to acetylphosphate to stimulate energy metabolism [10].

3. Therapeutic Protein Production Beyond Traditional Bioreactors

Therapeutic proteins like enzymes and antibodies have been produced in traditional, cellular expression systems (e.g., bacterial, yeast, or mammalian cells) or bioreactors. Long development times, contamination risk, and challenges in producing complex proteins are some of the disadvantages of the traditional bioreactors [18, 19]. Cell-free protein synthesis (CFPS) offer an unparalleled flexibility alternative that drastically cuts down on the amount of time needed to produce therapeutic proteins by using cell lysates to drive transcription–translation *in vitro* [20].

The programmable micro-factories, which are formed by combining CFPS with vesicles, can produce therapeutic proteins in reaction to stimuli. Yield, stability and precision are still major disadvantages of this strategy, despite improvements in targeted delivery and bioavailability [18, 21]. The adoption of CFPS for clinical trials has been hindered by incomplete post-translational modifications in the prokaryotic cells, variability in lysate preparations, and expensive substrate prices.

Compared with traditional bioreactors, CFPS provides greater speed, adaptability, and safety, especially when integrated with vesicle-based systems. It is a scalable and economical platform well suited for customized and decentralized manufacturing, making it a promising approach for therapeutic protein production despite ongoing challenges with yield, process control, and post-translational modifications.

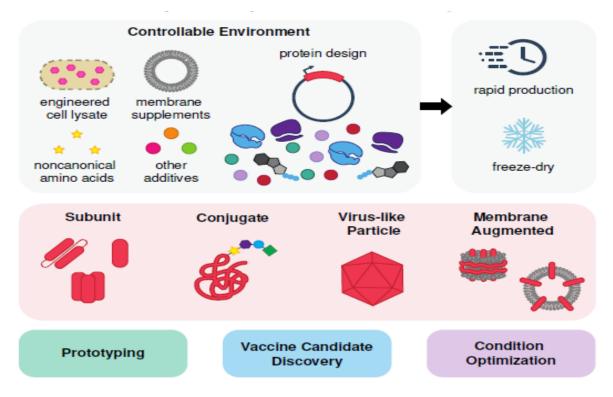


Fig 3: Harnessing Cell-free Systems for Protein-based Vaccine Design [26]

4. On-Demand Vaccine Manufacturing in Cell-Free Systems 4.1. RNA and Self-Amplifying RNA Vaccine Prototyping

Cell-free protein synthesis (CFPS) enables rapid, flexible vaccine prototyping by producing proteins outside living cells. It supports precise antigen modifications, portable freeze-dried formats, and applications ranging from subunit to virus-like particle vaccines, accelerating RNA vaccine development [22].

Currently, there are two main RNA-based vaccine strategies: self-amplifying RNA (saRNA) and non-replicating mRNA. Both platforms encode the target antigen, but saRNA contains extra genetic elements from alphaviruses that facilitate intracellular RNA replication, allowing for higher antigen expression at lower doses, potentially lowering reactogenicity and production costs. Crucially, saRNA does not produce infectious viral particles while maintaining antigen output because it retains replication machinery but excludes viral structural proteins [23].

The speed, versatility, and efficacy of messenger RNA (mRNA) vaccines have revolutionized vaccine development. mRNA vaccines employ synthetic transcripts encoding antigenic proteins, allowing for quick design and scalable manufacture in contrast to traditional vaccines that frequently depend on cell-based production. Their ability to respond to global health catastrophes has been proven by their success during the COVID-19 pandemic, especially with the Pfizer-BioNTech and Moderna vaccines [24].

The 5' cap, untranslated regions (UTRs), optimized open reading frame (ORF), and poly(A) tail of eukaryotic transcripts are all present in mRNA vaccines. For translation to be stable and effective, these structural elements are necessary. Modified nucleosides like N1-methylpseudouridine, codon optimization, and lipid nanoparticle (LNP) encapsulation are examples of advancements that have improved intracellular delivery, safety, and immunogenicity. Nevertheless, there are still issues, such as nuclease degradation, cold-chain reliance, and

sporadic inflammatory reactions [24].

Advancement in mRNA technology is represented by self-amplifying RNA vaccines. They allow the intracellular amplification of the antigen-encoding RNA by encoding nonstructural proteins (nsP1–4) from alphaviruses that combine to create a replicase complex. Compared to traditional mRNA vaccines, this results in higher immune responses and persistent antigen expression at significantly lower dosages. Both humoral and cellular immunity are induced by saRNA, according to preclinical research, and its safety profiles align with anticipated vaccine-induced inflammation. Clinical studies of a number of saRNA-based vaccinations for influenza, rabies, and COVID-19 are currently underway, with promising outcomes indicating balanced and long-lasting protection [23].

4.2. Antigen Screening Pipelines Using Rapid CFPS Platform

Vaccine discovery depends on the quick identification of antigens, yet traditional screening pipelines that uses cell-based that are laborious, inefficient, and limited in their ability to handle non-standard modifications. These limitations impede the development of vaccines for urgent outbreaks. Cell-free protein synthesis (CFPS) provides a potent substitute by facilitating the generation of antigens in an open, scalable, and fast system [22].

Because CFPS uses purified transcription-translation machinery with nucleotides, amino acids, and cofactors, it does not require cells and may express antigens in a matter of hours as opposed to weeks. High-throughput antigen screening is made possible by its support for the addition of noncanonical amino acids and chemical alterations that improve antigen stability, folding, or immunogenicity [22]. Lyophilized CFPS further enables decentralized, field-ready

Lyophilized CFPS further enables decentralized, field-ready antigen production, while automation allows parallel screening of hundreds of variants. However, CFPS integrates speed, chemical versatility, and scalability, transforming antigen screening pipelines and bridging the gap between genomic data and vaccine design. Limitations include incomplete post-translational modifications, difficulties in ensuring quality control across distributed settings, and the ability to quickly generate and test influenza hemagglutinin, botulinum toxin fragments, Shigella antigens, and malaria proteins, demonstrating adaptability across pathogens.

4.3. Personalized Vaccine Formulations in Clinical Contexts

A transition from one-size-fits-all approaches to personalized formulations that consider patient-specific requirements, disease profiles, and immune responses has occurred in vaccine development. The key to making this shift possible has been the development of RNA vaccine technology and cell-free protein synthesis (CFPS) platforms. These technologies are revolutionizing the design of vaccines for clinical application by enabling quick antigen design, adaptable modification, and individualized delivery systems. Messenger RNA (mRNA) vaccines offer a versatile foundation for personalization by encoding certain antigens in a synthetic transcript. They can be personalized for distinct viral variations or even tumor-specific antigens because to their modular construction, which allows for the quick substitution of antigenic sequences. It is now feasible to modify vaccine formulations for patient populations with varying tolerability and immune response profiles thanks to improved translation efficiency, decreased immunogenic side effects, and codon optimization, modified nucleosides, and lipid nanoparticle (LNP) encapsulation [24].

Self-amplifying RNA (saRNA) enhances personalized medicine by driving strong antigen expression at lower doses, reducing side effects while maintaining efficacy. In cancer therapy, for example, saRNA has been engineered to deliver cytokines like IL-12 directly into tumors, turning resistant cancers into immune-responsive ones ^[23]. Cell-free protein synthesis (CFPS) adds another layer of personalization by enabling rapid antigen prototyping from patient samples. In B-cell lymphomas, tumor-specific proteins have been quickly produced and fused with immune stimulators to create customized vaccines, which can be manufactured within days and optimized through site-specific conjugation to adjuvants or nanoparticles ^[22].

Despite their promise, these approaches face hurdles. saRNA vaccines remain expensive, require strict cold storage, and pose risks of instability or excessive immune reactions. CFPS, while fast, often yields lower protein levels and struggles with complex post-translational modifications. Both platforms also encounter regulatory, manufacturing, and accessibility challenges, particularly in low-resource settings.

Overall, RNA vaccines and CFPS technologies offer powerful tools for personalized medicine, but overcoming barriers in stability, scalability, safety, and regulation will be key to making individualized vaccines a clinical reality.

5. Economic and Logistical Feasibility

5.1. Cost Structures in Decentralized Biomanufacturing

Whether decentralized biomanufacturing may be more costeffective than conventional centralized models is one of the most important questions surrounding this process. Largescale facilities are necessary for conventional biomanufacturing, which usually costs hundreds of millions of dollars to develop and has significant continuing operating and regulatory costs. Decentralized models, on the other hand, make use of cell-free protein synthesis (CFPS) kits and modular bioreactors, which drastically lower the initial capital needs. The expenditures of specialized settings and extensive staffing needs can be reduced by using a small, plug-and-play bioproduction unit in facilities with fewer infrastructures [27, 28].

The two models also differ significantly in terms of operational costs. When operating at full capacity, centralized systems reduce per-dose costs due to economies of scale. However, these facilities become inefficient in outbreak scenarios when fast demand surges or supply chain bottlenecks occur. In steady-state operation, decentralized systems might have slightly higher unit costs, but they are more responsive, which lowers the financial losses associated with delayed medicinal distribution during medical emergencies ^[5]. In pandemic situations, where postponed intervention worsens fatality rates and overall health spending, this responsiveness is especially important.

The price of consumables and raw materials is another crucial factor. The lyophilized cell extracts and freeze-dried reagents used in decentralized systems for CFPS can be generated in large quantities and sent cheaply throughout the world. Decentralized systems lower transit and storage costs, in contrast to centralized manufacturing, which necessitates stringent cold-chain maintenance for several reagents [29]. Additionally, decentralized biomanufacturing's modular design enables incremental scale-up, avoiding the enormous capital risks associated with constructing centralized mega factories that might sit idle between outbreaks. The need for hybrid economic models that combine centralized baseline production with distributed, point-of-care surge capacity is highlighted by the fact that decentralized platforms optimize for resilience under uncertainty, while centralized facilities optimize for efficiency in stable demand conditions [6]. Such models could maximize both cost-effectiveness and responsiveness, offering a practical balance between longterm sustainability and short-term flexibility.

5.2. Supply Chain Resilience

Major weaknesses in international pharmaceutical and vaccine supply networks were made clear by the COVID-19 pandemic. Access to life-saving treatments was delayed, especially in low-resource nations, by export prohibitions, logistical obstacles, and disruptions in global trade. By permitting local production that avoids fragile international transportation networks, decentralized biomanufacturing directly addresses these weaknesses [30]. Dependency on cross-border transport is significantly reduced when just raw inputs, such as lyophilized extracts or DNA templates, need to be delivered rather than international shipping of completed goods. Rapid adaptation made feasible by localized production also improves resilience. For example, portable cell-free technologies enable vaccine or treatment production on demand, just before administration, in areas with limited cold-chain capacity. This lessens the possibility of spoiling and waste, which frequently accompany worldwide distribution. By switching from hoarding tactics to just-in-time local manufacturing, logistical risks are greatly reduced, and the expenses associated with keeping huge stockpiles that might run out before being used are decreased [31].

Modularity strengthens supply chain resilience even more. A network of regional production centers can be created by carefully placing dispersed biomanufacturing nodes

throughout different locations. Others can continue to supply in the event that one site faces political or technical difficulties, providing a redundancy that centralized systems are unable to offer. The experience of COVID-19 demonstrated that when centralized manufacturing was geographically concentrated, even developed economies found it difficult to get adequate vaccine supply. Such disparities may be avoided in future global health emergencies with the aid of decentralized models [3].

Decentralization also lessens the financial and environmental costs associated with long-distance transportation from a logistics standpoint. Reducing reliance on international freight networks improves the independence of regional health systems while reducing expenses and carbon emissions. Reliable mechanisms for allocating raw resources and upholding quality control across numerous small-scale operations are necessary to realize these advantages, though. Variability in production quality could undermine trust in decentralized platforms and jeopardize therapeutic efficacy in the absence of standardized oversight [33].

5.3. Financial Sustainability in Low-Resource Geographies

Decentralized biomanufacturing has strong logistical and revenue potential, but sustainable funding sources are necessary for its long-term sustainability in low-resource environments. Establishing dispersed units necessitates an initial investment in training, quality assurance systems, regulatory integration, and equipment. Low-income governments frequently lack the financial means to support these programs on their own, therefore blended finance methods that mix donor funding, public resources, and private sector involvement are required [34].

PPPs, or public-private partnerships, are a potential financing mechanism. PPPs can mobilize money while guaranteeing that production is in line with public health priorities by sharing risks and pooling resources. Donor-backed initiatives such as those supported by Gavi, CEPI, and the WHO have already demonstrated the ability to subsidize vaccine manufacturing in low-income regions. Extending such frameworks to decentralized manufacturing platforms could bridge early-stage financing gaps and enable broader adoption [35].

A central challenge is ensuring affordability while maintaining financial viability. If per-dose production costs remain too high, low-income countries may remain dependent on donor subsidies, perpetuating structural inequalities in health security. Conversely, if prices are forced too low without adequate subsidies, manufacturers may struggle to remain solvent. Innovative models, such as tiered pricing or advance market commitments, may help balance these competing pressures by guaranteeing purchase volumes while ensuring equitable access [36].

Financial sustainability is also impacted by intellectual property (IP) considerations. Local manufacturers in low-resource areas may find it difficult to implement decentralized systems without licensing agreements due to proprietary technologies. Potential remedies include patent pooling programs and open-source biotech movements, which allow for greater participation and reduced expenses. To strike a balance between the need for innovative incentives and fair global access, however, sustainable governance systems will be necessary [37].

Lastly, sustainability needs to be more than just emergency use. Decentralized biomanufacturing must be integrated into

larger industrial and health systems for long-term success, even though donor funding frequently speeds up implementation during emergencies. Low-resource nations can guarantee continued utility, lessen reliance on foreign funding, and build independent health security infrastructures by incorporating these platforms into standard vaccination and treatment delivery systems [38].

6. Ethical, Regulatory, and Biosecurity Consideration

In addition to its potential to revolutionize therapeutic accessibility, decentralized biomanufacturing also presents significant ethical and regulatory issues. Making sure that new technologies are distributed fairly is one of the main issues, especially in low- and middle-income nations where access to innovative medical treatments has historically been delayed. Decentralized platforms have the potential of escalating rather than reducing current health disparities if they are concentrated in affluent countries. Distributive justice is an ethical notion that requires innovations aimed at removing centralized barriers to benefit underprivileged democratization of production The unintentionally result in a new kind of technical divide if strong legislative frameworks and concerted efforts are not made to include decentralized biomanufacturing into vulnerable health systems [39].

Regulatory oversight continues to be another major obstacle. Conventional biomanufacturing takes place in centralized facilities that adhere to strict good manufacturing practice (GMP) guidelines. There are distinct chains of accountability for pharmacovigilance and quality control. Decentralized systems, on the other hand, imagine several smaller manufacturing units functioning in various contexts, occasionally at the point of care. New regulatory paradigms are needed to guarantee that each of these nodes complies with uniform GMP-compliant norms. It's possible that current frameworks, which were created for large-scale production, are not well-suited for managing dispersed systems. Regulators will have to adjust by creating digital quality control systems with real-time monitoring capabilities, defined standards, and portable, modular certification procedures. It will be difficult to strike a balance between patient safety and regulatory flexibility since too much regulation may hinder innovation and inadequate supervision may result in inconsistent treatment [40, 41].

The implementation of decentralized biomanufacturing is made more difficult by biosecurity issues. The portability, adaptability, and low infrastructure needs that make these platforms appealing also increase the risk of misuse. If misused, cell-free and modular platforms may be exploited to create dangerous biological agents outside of established regulatory frameworks. In order to monitor lawful apps and create protections against malicious exploitation, this dualuse risk calls for robust global regulatory systems. Therefore, ethical duty encompasses strong security measures in addition to accessibility. Technologies like biometric access control for biomanufacturing facilities, blockchain-based tracking of raw material usage, and global data-sharing platforms for anomaly detection could be vital instruments in reducing these hazards [42, 43].

Decentralized manufacturing raises questions about responsibility and liability in addition to the typical safety and security concerns. In centralized production, a single producer with a regulatory license is usually held accountable for unfavorable results. Assigning culpability, however,

becomes more difficult when drugs are manufactured at several dispersed locations, sometimes under different ownership systems. It is possible for the technology vendor, local operators, and authorities to dispute responsibility if a patient suffers negative side effects as a result of a batch generated at a biomanufacturing center located in a clinic. Delineating obligations throughout this distributed production ecosystem will require clear legal frameworks. Without them, adoption by private investors and health providers may be hampered by liability ambiguity [44].

Public acceptance and trust are also included in ethical considerations. In order for decentralized biomanufacturing to be successful, communities and patients need to trust that locally made medicines are safe, effective, and legitimate. Building trust necessitates open communication, collaborative decision-making, and implementation that is sensitive to cultural differences. Even when scientific efficacy is solid, health initiatives can be derailed by brittle public faith, as seen by past experiences with vaccination reluctance. Uptake may be hampered if communities believe decentralized production is experimental or insufficiently regulated. Therefore, to maintain alignment between technological innovation and societal norms, ethical implementation necessitates not only technical rigor but also strong community engagement and education [45, 46].

Lastly, the integration of decentralized biomanufacturing into global health systems will depend on the harmonization of global regulatory norms. Interoperable systems are necessary for emergency response since outbreaks frequently crossnational borders. The scalability and usefulness of these platforms may be severely constrained if regulatory fragmentation continues, with different rules for dispersed production being enforced by each nation. International consortia and World Health Organization-led initiatives may be crucial in creating globally accepted standards for biosecurity, safety, and quality in decentralized systems. Such initiatives could avoid regulatory bottlenecks and guarantee that security and ethical concerns continue to be at the forefront of global health preparedness by encouraging collaboration amongst national regulators rather than competition [47, 48].

7. Future Prospects in Distributed Global Biomanufacturing

In the future, decentralized biomanufacturing is projected to evolve into a worldwide interconnected ecosystem that mirrors a "bio-internet" of treatments, surpassing point-ofcare systems. A system like this would function as a mesh network of dispersed bioproduction hubs that could synthesize essential biologics on-demand. These hubs may include academic labs, hospitals, regional health centers, and even mobile field units. Real-time quality checking, smooth data sharing, and dynamic transfer of production tasks would all be made possible by these hubs' digital networking. Therapeutic designs might be uploaded and downloaded, similar to software updates, while manufacture is carried out locally in a standardized, certified framework, eliminating the need for central factories to send completed goods all over the world. The global biomanufacturing ecosystem would be more resilient, less susceptible to supply chain interruptions, and able to quickly respond collectively in the event of pandemics, bioterrorism threats, or natural disasters thanks to this distributed intelligence [49, 50].

The incorporation of machine learning (ML) and artificial intelligence (AI) into automated bioproduction systems is

essential to this objective. In a distributed production network, algorithms may troubleshoot irregularities, optimize synthesis parameters in real time, and forecast regional therapeutic requests. Libraries of pre-validated DNA constructions, protein sequences, and vaccine designs may be hosted on cloud-based platforms and licensed to local hubs. Federated learning models may eventually enable each hub to enhance its manufacturing procedures on its own while also returning data to the global network, speeding up collective innovation. With each production node serving as both a consumer and a contributor of biomanufacturing intelligence, the "bio-internet" may essentially operate as a constantly self-optimizing system [51, 52].

Such a distributed bio-internet has significant ramifications for preparedness and equity from the standpoint of global health. By gaining control of own medicinal production, nations who are now excluded from pharmaceutical supply chains could lessen their reliance on imports and precarious logistics. If digital infrastructure and governance frameworks are established, mesh-networked systems would enable lowresource areas to access the same therapeutic discoveries as high-income nations. By providing therapies suited to regional disease burdens, genetic backgrounds, and epidemiological circumstances, this could democratize access to precision biologics. Furthermore, biomanufacturing could adjust to region-specific limitations, including varying cold-chain capacity, distinct pathogen strains, or varying regulatory contexts, through localized production, increasing health systems' responsiveness to their own populations [53,

The merging of cell-free systems and synthetic biology with modular, plug-and-play production units is another example of the speculative horizon. Future production centers might rely on stable, portable kits that are activated by digital instructions rather than living cells altogether, according to developments in lyophilized transcription-translation systems. When coupled with 3D printing of bioreactor parts and microfluidic devices, this would lower the need for infrastructure and enable smaller, more remote clinics to affiliate with the global production mesh. When integrated with 3D printing of bioreactor parts and microfluidic devices, this would lower the need for infrastructure and enable smaller, more distant clinics to join the global production These modular biofactories could operate autonomously in harsh environments, such as space travel or disaster relief areas, while still being connected to the larger network to receive data and updates. This idea suggests that dispersed biomanufacturing may eventually spread beyond Earth, which is in line with NASA's aim in using in-situ resources for long-duration missions [55, 56].

Despite these advantages, it will take hitherto unprecedented levels of global collaboration and standardization to realize a "bio-internet" of therapies. Frameworks for intellectual property will need to change to strike a balance between global accessibility and incentives for innovation. Due to the fact that malevolent actors could seek to compromise digital therapeutic blueprints or infiltrate bioproduction facilities, cybersecurity will become just as important as biosecurity. Simultaneous extension of governance across the digital and biological worlds would necessitate hybrid knowledge at the nexus of international law, computer science, and biology. Such a future is not only possible but also becoming more likely due to the convergence of distributed manufacturing, digital connection, and AI-driven optimization. Therefore, it

is unlikely that the trajectory of decentralized biomanufacturing will culminate in isolated point-of-care systems; rather, it suggests a globally dispersed, digitally coordinated, and ethically regulated network that has the potential to completely alter how people take into consideration the production of medicines in the twenty-first century [57, 58].

8. Conclusion

In biotechnology, decentralized biomanufacturing is no longer a fringe idea; rather, it is a paradigm shift that is influencing how countries approach epidemic preparedness, production sovereignty, and medicinal access. Decentralized platforms disperse the center of production closer to the point of need, whereas centralized models previously depended on a limited number of massive facilities to service the entire world. This change is intellectual as well as logistical, redefining medicine as a resource that is dynamic and locally adaptive rather than a commodity that is transported via inflexible international pipelines. By doing this, it resolves the long-standing disparity between low-resource areas that are frequently left waiting in line during emergencies and with high-income nations strong pharmaceutical infrastructure [59, 60].

This discrepancy became apparent during the COVID-19 pandemic: mRNA vaccines were developed at an unusual pace, but their distribution was constrained by factors such as cold-chain bottlenecks, centralized production, and geopolitical stockpiling. Setbacks as these would have been mitigated with a decentralized approach, which would have enabled several regional centers to swiftly produce vaccines using common designs while modifying formulations to suit regional need. By allowing each region to respond simultaneously rather than sequentially, decentralized biomanufacturing essentially rebalances power and turns pandemics from catastrophic disruptions into manageable public health concerns [61, 62].

Decentralization represents resilience beyond crisis response. Conventional supply chains are susceptible to market monopolies, disruptions brought on by climate change, and geopolitical war. Distributed networks of biomanufacturing units, on the other hand, provide redundancy by enabling other nodes to compensate for failures in one node. The internet's decentralized architecture, which maintains functionality while under pressure, is modeled after this redundancy. The biomanufacturing mesh could democratize access to life-saving treatments, including resilience into the very structure of international health systems, much like the digital age democratized access to information [63, 64].

Most significantly, the potential of decentralized biomanufacturing transcends beyond vaccines emergency treatments. The concept challenges pharmaceutical markets' monopoly by empowering local hubs to manufacture biosimilars, orphan medications, or customized treatments. It reinterprets fair access as an intrinsic structural characteristic of a globally interconnected bioeconomy rather than as a charity given from the Global North to the South. Instead of being an afterthought or charitable addition, this presents health equity as a natural byproduct of the system [65, 66].

However, the idea of decentralized commitment is not blind to its limitations. To reduce the risks of abuse, disputes over intellectual property, and inequalities in technical or digital infrastructure, strong governance structures must be established. Biosecurity and ethical supervision will be crucial to maintaining a secure, reliable bio-internet, much as cybersecurity proved crucial to the development of the internet. Therefore, the task for policymakers is not to speculate if decentralization can be achieved, but to make sure that standards of transparency, oversight, and inclusion influence its development. Equity needs to be actively incorporated into the system's very framework; it cannot be achieved by chance [67, 68].

Decentralized biomanufacturing ultimately signifies a fundamental change in the way biotechnology interacts with society. In order to properly represent the many realities of global health, it realigns breakthroughs beyond proprietary centers that exercise influence and toward distributed, adaptable networks. Decentralized platforms have the potential to bring mankind one step closer to a future in which access to therapeutics is based on collective readiness rather than geography or geopolitics if they are fostered with vision, moral leadership, and consistent investment. In this way, decentralization is a reframing of bioengineering as a tool for equity, resilience, and international solidarity rather than merely a technical advancement [69,70].

9. References

- 1. Vilkhovoy M, Adhikari A, Vadhin S, Varner JD. The evolution of cell-free biomanufacturing. Processes. 2020;8(6):675.
- 2. Goerke AR, Swartz JR. Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng. 2008;99(2):351-67.
- 3. Salehi ASM, Smith MT, Bennett AM, *et al.* Cell-free protein synthesis of a cytotoxic cancer therapeutic: Onconase production and a just-add-water system. Biotechnol J. 2016;11(2):274-81.
- 4. Shimizu Y, Kanamori T, Ueda T. Protein synthesis by pure translation systems. Methods. 2005;36(3):299-304.
- 5. Pardee K, Green AA, Takahashi MK, *et al.* Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell. 2016;165(5):1255-66.
- 6. Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet. 2020;21(3):151-70.
- 7. Murphy TW, Sheng J, Naler LB, Feng X, Lu C. On-chip manufacturing of synthetic proteins for point-of-care therapeutics. Microsyst Nanoeng. 2019;5:1.
- 8. Cui Y, Chen X, Wang Z, Lu Y. Cell-free PURE system: evolution and achievements. BioDes Res. 2022;2022:9847014.
- 9. Schwille P. Toward synthetic cells: integrating bottomup and top-down approaches. Annu Rev Biophys. 2023;52:1-24.
- 10. Zhang L, Lin X, Wang T, Guo W, Lu Y. Development and comparison of cell-free protein synthesis systems derived from typical bacterial chassis. Bioresour Bioprocess. 2021;8:58.
- 11. Jewett MC, Forster AC. The future of synthetic biology: cell-free systems and the rise of synthetic transcription-translation machinery. Nat Rev Mol Cell Biol. 2022;23:151-67.
- 12. Calhoun KA, Swartz JR. Energizing cell-free protein synthesis with glucose metabolism. Biotechnol Bioeng. 2005;90(5):606-13. doi:10.1002/bit.20449.
- 13. Kim TW, Kim HC, Oh IS, Kim DM. A highly efficient and economical cell-free protein synthesis system using

- the S12 extract of Escherichia coli. Biotechnol Bioprocess Eng. 2008;13(4):464-9. doi:10.1007/s12257-008-0139-8.
- 14. Kwon YC, Jewett MC. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep. 2015;5:8663. doi:10.1038/srep08663.
- 15. Didovyk A, Tonooka T, Tsimring L, Hasty J. Rapid and scalable preparation of bacterial lysates for cell-free gene expression. ACS Synth Biol. 2017;6(12):2198-208. doi:10.1021/acssynbio.7b00253.
- Tinafar A, Jaenes K, Pardee K. Synthetic biology goes cell-free. J Biol Eng. 2019;13:2. doi:10.1186/s13036-018-0137-5.
- 17. Carlson ED, Gan R, Hodgman CE, Jewett MC. Cell-free protein synthesis: applications come of age. Biotechnol Adv. 2012;30(5):1185-94.
- 18. Chen X. Cell-free systems: transformative tools for protein synthesis and synthetic biology. Curr Synth Syst Biol. 2024;12(4):1000082.
- 19. Maharjan S, *et al.* Cell-free protein synthesis system: a new frontier for sustainable biotechnology-based products. Biotechnol Appl Biochem. 2023;70(6):2136-49.
- 20. Integrated DNA Technologies. Cell-free protein synthesis explained [Internet]. Coralville: Integrated DNA Technologies; 2024 [cited 2025 Sep 20]. Available from: https://www.idtdna.com/pages/applications/cell-free-protein-synthesis.
- 21. Wonhee K, Jinjoo H, Shraddha C, Jeong WL. Cell-free protein synthesis and vesicle systems for programmable therapeutic delivery. J Biol Eng. 2025;19:55.
- 22. Hu VT, Kamat NP. Cell-free protein synthesis systems for vaccine design and production. Curr Opin Biotechnol. 2022;78:102323.
- 23. Sellers RS, Ramaiah L, Hong SJ, Nambiar P, Jacquinet E, Naidu S. mRNA and self-amplifying RNA (saRNA) opportunities for disease prevention and therapy. Toxicol Pathol. 2024;52(8):545-52. doi:10.1177/01926233241298572.
- 24. Leong KY, Tham SK, Poh CL. Revolutionizing immunization: a comprehensive review of mRNA vaccine technology and applications. Virol J. 2025;22:71. doi:10.1186/s12985-025-02645-6.
- 25. Zawada JF, Yin G, Steiner AR, *et al.* Microscale to manufacturing scale-up of cell-free cytokine productiona new approach for shortening protein production development timelines. Biotechnol Bioeng. 2011;108(7):1570-8.
- 26. Perez JG, Stark JC, Jewett MC. Cell-free synthetic biology: engineering beyond the cell. Cold Spring Harb Perspect Biol. 2016;8(12):a023853.
- 27. Smith MT, Wilding KM, Hunt JM, Bennett AM, Bundy BC. The emerging age of cell-free synthetic biology. FEBS Lett. 2014;588(17):2755-61.
- 28. Chao R, Wong D, Cheng AA, *et al.* Distributed manufacturing of biologics: a decentralized model for pandemic preparedness. Trends Biotechnol. 2021;39(4):356-68.
- 29. Pardee K, Green AA, Ferrante T, *et al.* Paper-based synthetic gene networks. Cell. 2014;159(4):940-54.
- 30. Nguyen PQ, Soenksen LR, Donghia NM, *et al.* Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat Biotechnol.

- 2021;39(11):1366-74.
- 31. Adiga R, Al-Adhami M, Andar A, *et al.* Point-of-care production of therapeutic proteins of good-manufacturing-practice quality. Nat Biomed Eng. 2018;2(9):675-86.
- 32. Lambooij MS, Han S, Claassen E, van de Burgwal LHM. Financing vaccine production in emerging markets: lessons from the COVID-19 pandemic. Vaccine. 2022;40(16):2361-9.
- 33. CEPI. Financing and equitably distributing vaccines in outbreaks. Vaccine. 2019;37(11):1402-5.
- 34. Moon S, Alonso Ruiz A, Vieira M, Jambert E, Childs M, von Schoen-Angerer T. Will Ebola change the game? Ten essential reforms before the next pandemic. PLoS Med. 2015;12(3):e1001805.
- 35. Outterson K, McDonnell A, Rottingen JA, *et al.* Accelerating global innovation to address antimicrobial resistance: exploring incentives for drug development. PLoS Med. 2016;13(4):e1002000.
- 36. Yadav P, Lydon P, Oswald J, Dicko M, Zaffran M. Vaccine supply chain challenges in low- and middle-income countries: a literature review. Vaccine. 2014;32(38):4981-9.
- 37. Emanuel EJ, Persad G, Kern A, *et al.* An ethical framework for global vaccine allocation. Science. 2020;369(6509):1309-12.
- 38. Pauwels E, Denton SW. Emerging technologies and dual-use concerns: a horizon scan for global health. Health Secur. 2018;16(1):19-31.
- 39. Sherman RE, Anderson SA, Dal Pan GJ, *et al.* Realworld evidence—what is it and what can it tell us? N Engl J Med. 2016;375(23):2293-7.
- 40. DiEuliis D, Giordano J, Gronvall GK. Biosecurity implications for the synthesis of horsepox, an orthopoxvirus. Health Secur. 2017;15(6):629-37.
- 41. Tucker JB, Zilinskas RA. The promise and perils of synthetic biology. New Atlantis. 2006;12:25-45.
- 42. Biancone P, Radwan M, Secinaro S. Blockchain and liability in health care: emerging issues. J Med Internet Res. 2021;23(3):e24145.
- 43. Larson HJ, Broniatowski DA, Volkov DA. Elusive vaccine confidence in the COVID-19 pandemic. Lancet Digit Health. 2021;3(9):e573-4.
- 44. Quinn SC, Jamison AM, An J, Hancock GR, Freimuth VS. Measuring vaccine hesitancy, confidence, trust and flu vaccine uptake: results of a national survey of White and African American adults. Vaccine. 2019;37(9):1168-73.
- 45. Wouters OJ, Shadlen KC, Salcher-Konrad M, *et al.* Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet. 2021;397(10278):1023-34.
- 46. Gostin LO, Friedman EA, Wetter SA. Responding to COVID-19: how to navigate a public health emergency legally and ethically. Hastings Cent Rep. 2020;50(2):8-12.
- 47. Chari R, Jain M, Kumar R, *et al.* Distributed biomanufacturing: opportunities and challenges. Curr Opin Biotechnol. 2021;70:67-74.
- 48. Huang W, Jiang Y, Zhang J, *et al.* Decentralized production of biologics in emergency preparedness: vision for the future. Trends Biotechnol. 2022;40(10):1083-95.
- 49. Costello MS, Aalto-Setälä K, Töhönen V, et al. AI-

- enabled platforms in distributed biomanufacturing: potential and pitfalls. Biotechnol Adv. 2023;64:108138.
- 50. Gopinath A, Lewis NE. Federated learning in biomanufacturing networks: toward collaborative global optimization. Nat Biotechnol. 2022;40(11):1595-603.
- 51. Lemoine P, Sharfstein JM. Decentralized drug manufacturing for health equity. JAMA. 2020;323(14):1343-4.
- 52. Ncube B, Wouters OJ. Access to biologics in low- and middle-income countries: decentralization as a path forward. Health Policy. 2021;125(9):1212-20.
- 53. Pardee K, Slomovic S, Nguyen PQ, *et al.* Portable, ondemand cell-free biosensors for synthetic biology. Cell. 2016;167(3):640-51.
- 54. Menezes AA, Cumbers J, Hogan JA, Arkin AP. Towards synthetic biological approaches to resource utilization on space missions. J R Soc Interface. 2015;12(113):20150986.
- 55. Cohen IG, Gostin LO. Digital health and cybersecurity: bio-internet risks in a connected world. Lancet Digit Health. 2020;2(8):e383-4.
- 56. Frow E, Calvert J. Opening up the bioeconomy: distributed production and the challenge of global governance. Sci Cult. 2020;29(1):1-26.
- 57. Pisani E, Botchway S, van Zanten T, *et al.* Equity in vaccine distribution: lessons from COVID-19. Lancet Glob Health. 2021;9(9):e1125-33.
- 58. Sekalala S, Forman L, Habibi R, Meier BM. Health equity and international law during pandemics: the case for decentralization. J Law Med Ethics. 2020;48(3):565-72.
- 59. Usher AD. A beautiful idea: how COVAX failed. Lancet. 2021;397(10292):2322-5.
- 60. Plotkin SA, Robinson JM, Cunningham G, Iqbal R, Larsen S. The complexity and cost of vaccine manufacturing an overview. Vaccine. 2017;35(33):4064-71.
- 61. Pauwels E, Denton A. Decentralized manufacturing and resilience in biotechnology supply chains. Front Public Health. 2022;10:911234.
- 62. Thornton AC. Pandemic preparedness and distributed health manufacturing: lessons from network theory. Glob Public Health. 2021;16(8-9):1283-95.
- 63. Kapczynski A. The cost of medicines: decentralizing production for equitable access. Yale J Health Policy Law Ethics. 2019;19(2):347-72.
- 64. Jamison DT, Summers LH, Alleyne G, *et al.* Global health 2035: equity and decentralization as drivers of progress. Lancet. 2013;382(9908):1898-955.
- 65. Cohen IG, Adashi EY. The challenge of biomanufacturing governance in the digital age. Hastings Cent Rep. 2021;51(2):10-12.
- 66. Lander ES, Baylis F, Zhang F, *et al*. Ethics of next-generation biotechnologies: decentralization and global responsibility. Nature. 2019;575(7781):449-54.
- 67. Kickbusch I, Agrawal A. Solidarity in global health: governance lessons for decentralized biomanufacturing. BMJ Glob Health. 2020;5(7):e002677.