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infrastructures and biosafety regulations that reduce the hazards of environmental
dissemination, process engineering is evolving towards scalable, GMP-aligned field
manufacturing. These synergistic molecular and process breakthroughs collectively
frame edible vaccines as an emergent biopharmaceutical modality with profound
implications for decentralized, low-cost, and widely accessible immunization
strategies. This review provides insight into translational pathways, biosafety
strategies, and future objectives for clinical integration by clarifying new molecular
and technological advancements in plant-based edible vaccines.
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1. Introduction

More than 3 decades ago, when the first reports of plant manufacture of mammalian proteins surfaced, the term plant molecular
farming has been used to describe the idea of using plants as biological factories. The term “biopharming”, or molecular farming
was first used by Fischer et al, to refer to the production of recombinant proteins in plants [ 2. Early efforts focused on
recombinant macromolecules, including blood proteins, vaccines, and antibodies, but the scope has expanded to include raw
materials for cosmetics and therapeutic agents.
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In order to improve immunity against some specific
sicknesses and diseases, vaccines are used which are
biological substances that are designed to stimulate the
production of antibodies in both humans and animals [ 4],
However, millions of individuals in underdeveloped and low-
income countries of the world have not been completely
protected by vaccination due to issues like storage and high
cost. It has been accounted that an estimated 20% of newborn
remain unvaccinated, which has led to over 2 million
preventable deaths annually [l These challenges with
conventional vaccines include high production cost, cold-
chain dependence, and—in the case of some DNA
vaccines—variable efficacy and occasional adverse immune
reactions [® 71, These limitations have driven the search for
safe, easily administered, and stable alternatives, leading to
the innovative concept of using plants as efficient vaccine
production systems—giving rise to edible vaccines [, Oral
vaccines are more affordable and accessible, particularly in
developing countries. This has inspired the plant-based edible
vaccines, where edible plant parts serve as biofactories for
antigen production ! Antigen-expressing plants require
basic agricultural knowledge for cultivation and bypass the
costly purification and downstream processing steps of
conventional vaccines, making them a promising alternative
[10, 11, 12]_

Edible vaccines are typically generated in transgenic plants
and less commonly, in animals-and contain antigenic
components capable of stimulating an immune response. In
summary, edible vaccinations are biopharmaceuticals made
from plants or animals.

2. Plant Organelles Genomic Engineering of Antigen
Expression

2.1. Chloroplast Engineering of High-Density Expression
Protein products with clinical or veterinary uses are produced
via recombinant plant systems. These plant systems are
broadly categorized as those that use plant

1. Viral technology

2. Chloroplast transplastomic technology

3. Nuclear transgenic technology.

The stably integrated nuclear transgenes produce a relatively
low level of recombinant proteins (less than 1% of total
soluble protein, TSP), probably due to gene silencing or
position effects M3, In a plant viral vector system,
recombinant proteins are transient and at a higher level than
those of stably integrated nuclear transgenes.

Chloroplast genetic engineering has become a more advanced
and potent method for achieving exceptionally high levels of
recombinant protein expression in plants. Double
homologous recombination is necessary for chloroplast
genome transformation, where transgenic cassettes are
integrated into specific intergenic spacer regions, guided by
flanking sequences from chloroplast DNA, without
interfering with any functional genes, and as such, there is a
much higher level of protein expression in chloroplasts,
enabled by more than 10,000 copies of transgenes in each
transformed plant cell 1416, The intergenic spacer region
between the trnl—trnA genes in the rrn operon has emerged as

one of the most commonly used integration sites among the
many integration sites examined, and further benefits of this
locus include enhanced copy number via replication origin
and correction mechanisms within the inverted repeats that
improve homoplasmy [15-221,

Regulatory sequence selection also influences the efficiency
of high-density expression. To further increase translation
efficiency, the heterologous bacteriophage T7 gene 10 leader
sequence has been used, and the chloroplast psbA promoter
with its 5" and 3’ UTRs continues to be one of the most useful
tOOlS [22, 23, 24]_

A significant benefit of chloroplast engineering for molecular
farming is that it removes expression variation across
independent transgenic lines; no reports of gene silencing
have been documented in chloroplast transgenic
(transplastomic) lines ?°1. Moreover, because transgenes are
usually inherited maternally, it reduces the risk of foreign
genes spreading through pollen. Although traditionally
focused on protein  hyperexpression,  chloroplast
engineering’s high transcription capacity also makes it a
valuable platform for producing double-stranded RNA
(dsRNA).

Chloroplast engineering for high-density expression
combines precise genome targeting, strong regulatory
control, coding optimization, multigene stacking, and
efficient marker management to achieve some of the highest
recombinant protein yields in plants, while extending
chloroplast engineering beyond protein hyperexpression to
dsRNA production broadens its applications in agriculture
and biomedicine 8. Field studies showed that plastid-
derived dsRNA could protect against the potato beetle,
highlighting the translational potential of this approach [2€1,
The design of coding sequences is another important
consideration in optimizing chloroplast expression. For
example, genes with more than 10 introns can now be
expressed directly in plastids without the need for cDNA
libraries thanks to the removal of introns from eukaryotic
genes using overlapping-primer PCR 271, Furthermore, it is
noteworthy that some of the highest expression levels have
been achieved utilizing unaltered native coding sequences,
including

those from humans [?81, even though codon optimization can
occasionally enhance expression [2°1. Chloroplast engineering
is now much more efficient thanks to developments in vector
construction, regulatory design, and coding optimization.
Moreover, polycistronic constructs are widely used for
multigene engineering, and even without intercistronic
expression elements (IEESs), high-level expression of several
heterologous multigene constructs has been achieved,
suggesting that simplified polycistronic designs are adequate
for effective translation 2% 2% %0, Selectable marker systems
are also necessary for transplastomic line recovery, and the
most reliable marker across species is the aadA gene that
confers spectinomycin resistance 332, The exact removal of
selection cassettes from the chloroplast genome has been
made possible by the application of marker removal
techniques, including direct repeats, Cre-lox recombination,
and most recently, Bxb1 recombinase-mediated excision, to
refine genetic constructs 33 341,
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(A) Schematic Representation Of Transgene Sequence Integration Into Plastid Genome By Homologous Recombination
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Fig 2.1: The Art of Chloroplast Genome Engineering [164]

2.2. Nuclear-Encoded Expression with Targeted Post-
Translational Modification

The best characterized PTM in eukaryotes is reversible
phosphorylation, which is essential for almost every cellular
function in the eukaryotic cells and is mediated by the
enzymatic activities of kinases and phosphatases.
Approximately 1,000 genes in plants encode potential
kinases that phosphorylate residues of Ser, Thr, and Tyr ],
Nevertheless, chloroplast phosphoproteomics has shown that
there is no detectable Tyr phosphorylation and that 72% are
Ser-phosphorylated and 27% are Thr-phosphorylated 61,
PSII repair under high light conditions depends on the
phosphorylation of PSII core proteins, particularly D1,
whereas reversible light-dependent phosphorylation of LHC
proteins controls the excitation balance between PSII and PSI
[37. 38, 39, 40. 41 ' These processes are mediated by the kinases
STN8 and STN7 and the LHC phosphatase has been defined
[2. 431 |t is essential to know that phosphorylation plays a
crucial function in chloroplast metabolism: other chloroplast
phosphoproteins include transcription, calcium signaling and
regulators of cyclic electron transport 44 4],

The three types of acetylation -O-, Na-, and Ne-acetylation
(Lys acetylation)—all require acetyl CoA as a substrate. No-
acetylation is one of the most common protein modifications
in eukaryotes and is irreversible (46471, Protein stability and
pl are impacted as it neutralizes the positive charge at the N-
terminus. NAT complexes often linked to ribosomes catalyze
it in plants M8 It may control interactions, targeting and
protein half-life 484951521 Developmental abnormalities are
caused by mutations in NATB % %4 Na-acetylation takes
place in chloroplasts in three different ways: cotranslational
acetylation of preprotein transit peptides, Na-acetylation
essential for import and Na-acetylation preventing cytosolic
accumulation in TOC159 mutants [55 56.571,

Methylation occurs when methyl groups are transferred to
Lys or Arg residues by methyltransferases 58 59, Arg
demethylases are yet unknown but Lys demethylases have
been found %, Protein stability, localization, or interactions
may be impacted by this modification, which increases the
hydrophobicity and basicity of residue 4. Some species'
Lys-14 is trimethylated in chloroplasts by Rubisco large
subunit methyltransferase (RLSMT), albeit its functional
implications are still unknown. Lys methylation is also
present in FRU-1,6-bisphosphate aldolase isoforms, but it has
no effect on activity [62 631,

Nitration; two NO-dependent PTMs important in signaling
are Tyr nitration and S-nitrosylation. By adding a nitro group
to Tyr, Trp, Cys, or Met, nitration modifies the hydrophilicity
and charge of the residue 54 81, Tyr nitration is mediated by
peroxynitrite (ONOO-), which is formed when superoxide
and NO combine 6. Nitrated Tyr residues are frequently
found in loop regions close to basic residues and negative
charges 71, These modifications integrate with other PTMs
to regulate protein function dynamically.

Glycosylation, once considered absent in chloroplast
proteins, has now been demonstrated in certain nuclear-
encoded proteins that are imported through the ER-Golgi
pathway. N-glycosylation, observed in carbonic anhydrase
and a-amylases, plays a crucial role in protein folding and
stability [68 69.70.71.721  Additionally, O-glycosylation has been
reported in P43 DNA-binding proteins [3l. These findings
reveal that nuclear-encoded chloroplast proteins can undergo
regulation by multiple cellular compartments and pathways,
underscoring the coordinated role of PTMs in chloroplast
function.

Chloroplast proteins like ferredoxin, PSI, and PSII have been
shown to undergo sumoylation, however this process has
received less attention [74,75]. Sumoylation is believed to
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take place in the cytoplasm prior to protein import [76],
where it plays a role in modulating protein localization and
interactions. Collectively, the wide range of PTMs—
including  phosphorylation, acetylation, methylation,
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nitration, glycosylation, and sumoylation—demonstrates the
intricate regulation of nuclear-encoded proteins within
chloroplasts, integrating processes such as photosynthesis,
metabolism, development, and responses to stress.
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Fig 2.2: PTMs overview in the chloroplast [162]

3. Chemical Stability and Bioencapsulation of Plant-
Derived Antigens

Chemical stability and bioencapsulation are strategies
designed to protect plant-derived antigens from adverse
environmental conditions, while enabling controlled release
and targeted distribution. The chemical stability approach
prevents plant-derived antigens from degrading due to
oxidation, pH changes, or enzymatic activity through the
application of chemical substances such as stabilizers that
inhibit protein aggregation, cryoprotectants, or antioxidants.
For instance, trehalose can be added to a plant-based vaccine
formulation to prevent damage during freeze-drying and
storage [/7-78],

The use of suitable carriers, referred to as drug delivery
vehicles (DDVs), facilitates the interaction of drugs and
vaccines with specific targets. The choice of delivery route
determines the most appropriate DDV. While many drugs are
administered directly into the bloodstream, others are
administered orally, with oral administration often preferred
due to its convenience, non-invasiveness, and ease of dosage
control "1, Since oral delivery places additional demands on
the drug, such as oral bioavailability, stomach acid resistance,
and resistance to digestive enzymes, the DDV's job is to
overcome these barriers while protecting the drug and, if
necessary, preventing premature release that could result in

off-target effects.

Numerous prospects for the manipulation of innovative
DDVs are presented by plants' ability to support
bioencapsulation at the cellular and subcellular levels, as well
as the synthesis of proteinaceous nanoparticles. The high
levels of lignin and cellulose in plant cell walls provide
exceptional resistance to enzymatic digestion and physical
stress. Therefore, encapsulating drugs and vaccines in plant
cells not only protects them during transit through the upper
digestive tract but also enables drug delivery to the intestinal
lining. Although plants are widely consumed, commensal gut
bacteria are necessary for accessing the nutrients found in
plant cells. The binding of encapsulated protein to cell-
specific ligands facilitates the absorption of drugs and
vaccines into intestinal epithelial cells, delivery to mucosal
immune cells, or passage through the endothelium into
circulation, thereby supporting systemic immune response
and enabling oral drugs to cross the blood-brain barrier [,
Numerous subcellular compartments found within plant cell
walls can also act as an extra line of defense. For instance,
storage organelles enable the steady intracellular
accumulation of proteins, lipids, and carbohydrates as well as
other energy stores. Plant-derived polymers from storage
organelles are also promising in vitro encapsulation
materials. Zein, the major storage protein in maize seeds, has
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been widely explored due to its distinctive physicochemical
and biological properties. It forms edible films that are
durable, hydrophobic, and resistant to microbial degradation,
making it useful in food and pharmaceutical coatings [,
Zein nanoparticles have been applied to encapsulate poorly
soluble compounds such as curcumin 2, aceclofenac I,
quercetin 4, and a-tocopherol [82 8. 84 81 | jkewise, starch
granules, which store energy-rich carbohydrates in plants,
have been developed as DDVs alongside their polymers [¢-
87, With excellent biocompatibility, starch polymers are
utilized in various biomedical and pharmacological
applications and starch microparticles have also
demonstrated potential adjuvant activity [ 81,

4.  Immuno-Nutritional in  Plant-Based
Biopharmaceuticals

Chemical agents that can influence the immune system are
referred to as immunomodulators, the chemical substances
can decrease the aberrant immunological response that occurs
in immune disorders or increase the immune defense to
strengthen the body's responses against infectious or
exogenous damage. Furthermore, by assisting the immune
system in targeting nonimmune targets, immunoadjuvants
can enhance the immune response. The microbiomes and
inflammatory pathways can both be altered to help regulate
immune function. The pleiotropic and multifaceted effects of
several plant-based nutraceuticals have led to their
investigation as potential immunomodulating drugs. A
desirable nutraceutical strategy is their adjuvant contribution,
which is typically more tolerated than pharmaceutical
therapies (Di Sotto et al., 2020).

The immune system functions through both innate and
adaptive mechanisms. Agents that modulate immunity may
act either to suppress or stimulate immune activity.
Immunosuppressants work by preventing activation or
reducing the function of immune components, whereas
immunostimulants enhance the body’s natural defenses to
maintain or restore homeostasis [*l. During the COVID-19
pandemic, vaccine-induced trained immunity was suggested
as a method to strengthen antiviral protection %, Increasing
research underscores the importance of the gut microbiome
in immune regulation; disturbances in its balance are linked
to disease, while enhancing it with prebiotic or probiotic
supplementation supports immune resilience 2 %1, This
interplay between the microbiome and immunity exemplifies
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a key immuno-nutritional synergy.

Since ancient times, a number of medicinal plants and
phytochemicals have been recognized for their capacity to
modulate immune system function. In addition to promoting
innate and adaptive humoral and cellular immunity, they also
modulate the gut microbiota or disrupt proinflammatory
pathways %l Examples are Curcuma longa, which
contains curcuminoids that have IL-10 mediated anti-
inflammatory activity, Panax ginseng, which contains
triterpene saponins that stimulate cytokine activation and gut
microbiome modulation and Echinacea purpurea, which
contains alkylamides and polysaccharides that activate
cellular immunity 4 97 %1 |t has also been reported that
Astragalus membranaceus, Withania somnifera, and other
plants have immunostimulant properties % 100,
Polysaccharides are carbohydrate macromolecules that have
immunostimulatory properties that depend on their chemical
structure, molecular weight, and branching [0 2, For
instance, Astragalus polysaccharides increase NK cell
cytotoxicity and promote nitric oxide synthesis in
macrophages (19 104 191 Dyjetary fibers such as inulin and B-
glucan are metabolized by the gut microbiota to produce
short-chain fatty acids (SCFAs) that interact with GPR
receptors on immune cells, modulating NF-xkB and MAPK
signaling [ 1071 | ong-chain fatty acids also exhibit
immunomodulatory properties; oleic acid reduces NK
activity and causes proapoptotic effects in lymphocytes [0
1141 "and conjugated PUFAs, such as punicic acid, stimulate
CD4+ and CD8+ immunity through PPARY/3 mechanisms
[115, 116]

Clinical research demonstrates the potential of nutraceuticals
produced from plants in biopharmaceutical applications. In
cancer patients, astragalus therapy boosted NK cell activity
[117): products made from echinacea marginally decreased the
risk and duration of colds 8 1191 Sypplementing children
with long-term respiratory issues with B-glucan enhanced
their immunity 1201221 Cancer recurrence was reduced by
Mannan-mucin 1 without causing any harm [?3 These
results highlight how immuno-nutritional synergy are used by
plant-derived nutraceuticals to modify both innate and
adaptive immunity. Even though there is a lot of preclinical
evidence, more excellent clinical research is required to
completely determine their function in plant-based
biopharmaceuticals.
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Fig 4: Primary classes of plant-sourced nutraceuticals with immunomodulatory potential [163]
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5. Multi-Antigenic and Modular Expression Systems

The administration of single antigens has today become the
new paradigm for edible vaccines, which have experienced a
remarkable transformation. However, integrated systems that
can express several immunogens and dynamically regulate
their deployment have been incredibly adopted in this field.
An evolution of this kind demonstrates empirically the need
for more flexible, broader-spectrum vaccination techniques
in public health, particularly in areas where seasonal
outbreaks are influenced by environmental factors and co-
infections by numerous pathogens are still common.
Engineered crops with multi-antigenic payloads and
switchable modular structures offer a frontier in vaccine
innovation within the plant-based biopharmaceutical
landscape, allowing edible vaccines to precisely and scalable
address complicated epidemiological scenarios.

5.1. Polyvalent Vaccine Crops: Genetic Stacking for
Multi-Pathogen Protection

Today's polyvalent vaccine crops are developed to express
immune responses against the same pathogen within a single
plant matrix, neutralizing various pathogens. This is usually
referred to as genetic stacking technique, a technique
whereby several transgenes are integrated, encoding different
antigenic proteins into a single host genome or organelle
system. This is the general practice for this genetic stacking
method. Furthermore, due to its high copy number and ability
to integrate large operons for several antigenic genes without
gene suppression, chloroplast transformation has proven
especially invaluable in this aspect 2% 151, For example,
polycistronic chloroplast constructions that express the
epitopes of bacteria, viruses, and protozoa have shown
sustained, high-level expression of multivalent antigens
while preserving the host plant's ability to photosynthesize
[126]

Moreover, polyvalent crops have demonstrated essential
epidemiological significance. Children are particularly
vulnerable to respiratory infections, parasite infestations, and
diarrheal illnesses in many endemic areas. The logistical
challenges associated with multiple immunization campaigns
may be lessened by developing and implementing crops that
may co-express antigens against like the virus, rotavirus, the
bacteria, Vibrio cholerae, and enterotoxigenic Escherichia
coli in a single edible matrix 1?7, Furthermore, the display of
mosaic epitopes has been made possible by recent notable
experimental progress in virus-like particles (VLPs) formed
in plants, resulting in chimeric structures that provide cross-
protection against different viral strains %], To ensure that
correct folding and epitope exposure is achieved in a
multivalent environment, practices like linker peptide
engineering and codon harmonization are being widely
adopted more and more to enhance this modularity in
antigenic presentation 129,

In addition to its immunological effectiveness, polyvalent
vaccine crops have, at industry level, shown to offer
production efficiency. Typically, different antigens
expressed by a single plant eliminate the need for different
manufacturing lines, also simplifying downstream
purification, and providing affordable production options in
environments or ecosystems with limited resources. To
balance immunogenicity across several targets, rational

construct design and adjuvant integration are necessary due
to antigenic competition, which might cause the immune
response to be expressed in a biased manner toward a single
dominant antigen 3,

5.2. Switchable Genetic Constructs: Seasonal or Region-
Specific Antigen Deployment Through Modular
Cassettes

Switchable genetic constructs, even though still witnessing
modifications via research, is a method that concentrates on
the regulated and context-specific deployment of antigens.
Polyvalent crops on the other hand, handle exposure to
multiple pathogens. To enable antigen expression only when
necessary, these systems rely on two factors: inducible
promoters and modular cassettes. These two can then be
triggered by external stimuli such heat, light, chemical
inducers, or developmental signals 1. On a practical note,
these structures enable crops to operate as vaccine reservoirs
particular to a given location, generating antigens during
seasonal epidemics, such as cholera during monsoon rains or
influenza throughout cold seasons 132,

With research in this area still expanding, the fine-tuning of
expression cassettes has been rendered much easier, owing to
recent research advancements in synthetic promoter libraries,
which allow for precision in the spatiotemporal control of
antigen synthesis. For instance, it is now, even though novel,
possible to effectively toggle protein expression in transgenic
tobacco using ethanol-inducible promoters in a way that is
scalable to agricultural systems (%1 In a similar wvein,
promoters powered by circadian rhythms are being studied to
reduce the metabolic load on the plant host during non-
essential phases by coordinating antigen synthesis with
predictable environmental cycles 34, The application of
modular viral replicon systems, in which different antigen
cassettes may be incorporated into a single viral backbone
and spread across plant tissues, is a particularly promising
approach. These systems essentially serve as "plug-and-play"
vaccine platforms, enabling the quick substitution of

antigenic components in response to new pathogen variations
[135]

In situations involving pandemic preparedness, where
prompt vaccine production is critical, this flexibility is vital.
However, several biosafety concerns are raised
simultaneously, when switchable structures are the adopted
mechanism in edible vaccines. For example issues such as
horizontal gene transfer, unexpected activation under
environmental stress, and leaky promoter activity are still
likely to occur, thereby calling for strict molecular
protections and biocontainment techniques %, In order to
improve safety while preserving the functional flexibility of
modular vaccine constructions, future research approaches
will involve incorporating digital traceability systems and
genetic "kill switches.”

6. Bioprocess Engineering for Controlled Agricultural-
Scale Manufacturing

Only via the successful scaling of molecular discoveries in
plant biotechnology can the potential of edible vaccines be
realized on a worldwide basis, with particular attention to
areas that are vulnerable to epidemiological outbreaks. A
safe, economical, and reproducible production pipeline
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would be necessary for this. Agricultural-scale production of
plant-based vaccines is inherently diverse, which is nearly the
opposite of conventional vaccine manufacture, where highly
uniform growth settings are provided by microbial or
mammalian cell bioreactors. In order to connect greenhouse
systems or open-field cultivation with the Good
Manufacturing Practice (GMP) requirements necessary for
pharmaceuticals, bioprocess engineering techniques become
crucial. This entails combining strict quality control,
containment agriculture, and standardized supply chain
models that guarantee biosafety and scalability. This section
hence, broadly discusses available mechanisms, their
operational module and areas of scientific interests.

Scalable Containment Agriculture Integrating GMP
Compliance in Field-Based Production

Reconciling pharmaceutical uniformity with agricultural
heterogeneity has over the years proven to be a major
difficulty in the bioprocessing of edible vaccines. There are
several reasons for this, however. Whether using hydroponic
systems, vertical farming, or greenhouse facilities, controlled
confinement agriculture provides a technique to reduce
environmental changes while following GMP guidelines [*371,
These technologies at very effective levels, reduce batch-to-
batch variability which are often persistent challenges in
antigen content by enabling predictable yields, controlled
nutrient supply, and pest management without the use of
broad-spectrum insecticides. Despite its economic utility and
appeal, field-based production poses biosafety issues such as
accidental environmental spread, cross-pollination, and
accidental presence in the food chain 2381,
Pharmaceutical-grade containment is being achieved by
combining GMP monitoring procedures with procedures
ranging from male sterility systems and plastid
transformation (maternal inheritance) to greenhouse isolation
units 1391, Also, adopting agricultural tools that are precise,
including Al-driven crop monitoring, remote sensing, and
soil moisture analytics, improves control even further and
helps producers satisfy without operational burden, the strict
international regulations enacted for safe biopharmaceuticals.
Notably, a scaled substitute for open-field transgenics has
been made possible by developments in automated
agroinfiltration platforms that run in automated processes,
enabling for temporary expression in large-scale greenhouses
(1491, These facilities provide constant antigen titers and GMP-
compliant batch release testing that is comparable to that
utilized in mammalian cell cultures by simulating
predictability obtainable in bioreactor-like environments in a
plant production system.

Supply Chain Integration from Cultivation to Post-
Harvest Downstream Processing

Among other factors, crops of interest also require strong
supply chain integration that connects processes beginning
from plant cultivation, their harvesting, downstream
processing and final distribution in order for edible vaccines
to satisfy scalability at high standards. This is because edible
vaccines require a different purification and distribution

process than traditional vaccines, which are purified and
given out in vials. They can be given as minimally processed
biomass, such as lyophilized plant tissue, or as purified
antigens, but their packaging requires they being contained in
capsules or tablets 141, However, post-harvest processing is
subject to specific restrictions for each delivery route.
Because proteolysis and oxidation can quickly impair
potency, it is crucial for edible tissue-based vaccines to keep
antigen stable during storage, transportation, and distribution
in addition to establishing a regulated environment for their
growth (1421,

Techniques including spray-drying, freeze-drying and
ultimately, encapsulation into cellulose or starch matrices
have been used to increase shelf life in non-refrigerated
environments in order to make this feasible. For deployment
in environments with limited resources, this is particularly
crucial 113 144 Additionally, pathogen testing, uniformity
evaluation, and other procedures like standardization of
antigen dosage per unit biomass are necessary steps for the
integration of downstream operations with upstream
cultivation. Both pharmaceutical integrity and agricultural
scalability are maintained by edible vaccine crops thanks to a
well-designed logistics system that takes inspiration from
commercial food supply chains.

Closed-loop production workflow for edible vaccine crops
Close-loop production workflow is notable due to its
comprehensive bioprocess engineering paradigm that
incorporates all phases ranging from genetic design to patient
delivery. This is most impressively usually within a regulated
and traceable framework. This workflow involves growing
crops in contained and tightly monitored environments,
harvesting them in GMP-certified circumstances, and
processing them in facilities built for handling
pharmaceutical-grade food [*“%1. To track each production lot
from seed to end-user distribution, closed-loop systems use
digital technologies for traceability, such as blockchain
platforms and QR-coded batch identification [*¢], In addition
to preventing counterfeiting and guaranteeing accountability,
this step offers post-market surveillance data that is essential
for maintaining public confidence.

Additionally, adaptive manufacturing as targeted strategy is
now made possible by closed-loop workflows. For instance,
a cholera vaccine crop can be converted to an influenza
antigen crop in the same facility by simply changing the
genetic cassettes adopted for the process, temporary
expression or agroinfiltration. Also, compatibility with
modular production settings, that in some cases are situated
adjacent to areas that are prone to outbreaks, is another
advantage of adopting closed-loop systems in anufacturing.
This lessens dependency on international cold-chain logistics
and gives local health services the ability to respond quickly
1147, However, because edible vaccines fall under both
pharmaceutical and agricultural domains, making cross-
border GMP certification challenging, such integration
necessitates international regulatory frameworks being
adhered to (48],
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7. Regulatory, Biosafety, and Containment Strategies
With some of the concerns of edible vaccines production that
includes production processes, distribution and feasibility of
products, biocontainment remains a primary concern. This is
because the right techniques are vital in ensuring that the
edible vaccines do not inadvertently leak into the
environment where they pose a high risk of, if not contained,
crossbreeding with wild species or infiltrate undesired
ecosystems [0 151 Regulatory systems place a strong
emphasis on containment strategies that are both genetic and
physical. Some of the measures to contain this include tight-
controlling greenhouses, restricting access fields, and spatial
isolation strategies that reduce gene flow, all serving as
effective strategies for physical biocontainment. On the other
hand, genetic techniques include the creation of inducible
promoters that only produce the antigen under specific
circumstances and transplastomic plants that limit transgene
inheritance through pollen. When combined, these strategies
help to lower the likelihood of unintentional spread, boosting
public confidence and adhering to global biosafety
regulations 152,

Digital traceability technologies are becoming a
supplementary layer of supervision beyond molecular
protections. Real-time distribution pathway verification has
been revolutionized with the use of technology like
blockchain-based tracking supplemented with Al-driven
supply chain monitoring. The use of these two techniques
minimizes the possibility of diversion or the introduction of
counterfeit vaccination goods while guaranteeing that edible
vaccine supplies reach their target audiences 5% 1%, These
two strategies, if combined rightly with digital traceability
and biological containment, work in tandem to create a
comprehensive regulatory framework that strengthens public
confidence and safety.

8. Conclusion — Translational Pathways for Next-
Generation Edible Vaccines

With growing attention across several laboratories in edible
vaccines and its intriguing convergence of immunology,
plant biotechnology, and global health policy, the
development of edible vaccines also illustrates how people's
conceptions of preventative care have changed in a more
connected world. From genome-edited expression systems to
antigen stabilization in plant matrices, scientific advances
over the last 20 years have continuously shown proof-of-
concept and, more and more, scaling potential. Vaccines
embedded in staple foods, formerly rejected as an unorthodox
idea, are now considered a viable supplement to traditional
vaccination pipelines, especially in resource-constrained
settings where cold-chain logistics are still prohibitive [
156)

However, the real potential of edible vaccines remains to
enhance current approaches rather than replace them. Edible
vaccine crops could revolutionize preventive care in modern
day by providing a decentralized delivery mechanism at
community level much like oral polio vaccines did in the
twentieth century when they revolutionized mass
immunization mechanisms %71, By drawing comparisons, it
can be argued that, just as polio vaccination demonstrated the
practical benefits of oral rather than parenteral
administration, edible vaccines now apply this reasoning to
an agricultural framework, combining immunization and
food security in a single innovation.

However, whether these vaccines become mainstays of
public health or remain laboratory experiments will depend
on regulatory and biosafety considerations. Despite
unmistakable scientific proof of safety, past debates over
genetically modified organisms (GMOs) show the public's
ambivalence against the implementation of biotechnologies.
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Lessons learned from the adoption of genetically modified
rice and maize are helpful in this regard: broad acceptability
depends on culturally appropriate communication tactics that
match innovation with regional nutritional and social customs
in addition to regulatory approval X8, If communities are
involved early on in ethics, and trust in the area of
deployment, edible vaccines embedded in well-known foods
like rice, bananas, and tomatoes may have a special
resonance.

In the future, distribution networks will probably incorporate
blockchain-based verification systems and digital traceability
frameworks to handle biosafety and authenticity. Current
containment technologies, such as site-specific recombinases
and chloroplast engineering, indicate a emerging shift in
operation, where biocontainment is becoming more
fundamental rather than extrinsic, although early-stage gene-
edited crops originally sparked concerns about "escape” into
uncontrolled ecosystems %1, From reactive oversight to
proactive, embedded safety-by-design structures, this
progression reflects the larger trajectory of biotechnology.

In order to combat re-emerging infectious dangers like
cholera or pandemic influenza, the first worldwide health
campaigns utilizing edible vaccinations in conjunction with
their injectable counterparts may be implemented within the
decade to come. It is possible to also witness integrated
nutraceutical-immunological platforms by the middle of the
century, where it is conventional to have dietary staples serve
as both a source of nutrition and an immunization, a practice
with the prospect of integrating safety into food systems.
Such a shift will broaden the definition of what traditional
societies view as "medicine" in addition to redefining
"vaccination."

Ultimately, edible wvaccines represent a translational
philosophy rather than merely being a scientific
advancement. They challenge societies, scientists, and
policymakers to reconsider the division between public
health, medicine, and agriculture. In the same way that
antibiotics revolutionized medicine in the 20th century,
edible vaccines may serve as a fulcrum for the 21st century's
efforts to provide universal, affordable, and sustainable
immunization. It will take more than just laboratory skillset
to make this promise a reality; it will also require the
willingness to negotiate and reconsider regulatory landscapes
in public health policy making, an extra commitment to build
public confidence, and a special focus on the interdisciplinary
collaboration that edible vaccines so gracefully require (6%,
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