International Journal of Pharma Growth Research Review

The in Vitro Anti-Inflammatory and Antioxidant Activitites of the Bark Extracts from Castanea Mollissima in Vietnam

Dam Thi Bich Hanh ¹, Do Tien Lam ², Dang Thi Thuy My ³, Ngu Truong Nhan ^{4*}

- ¹ Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam ^{1,3,4} Tay Nguyen University, Buon Ma Thuot, Dak Lak, Vietnam
- ² Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- * Corresponding Author: Ngu Truong Nhan

Article Info

ISSN (online): 3049-0421

Volume: 02 Issue: 02

March-April 2025 Received: 19-02-2025 **Accepted:** 17-03-2025

Page No: 28-32

Abstract

Evaluation results of anti-inflammatory effects through the inhibition of NO production in RAW264.7 macrophages and antioxidant activity using the DPPH method of the crude extract (TK); fractional extracts: n-hexane (TKH), ethyl acetate (TKE) and methanol (TKM) of the bark $Castanea\ mollissima$ in Vietnam as follows: The crude extract (TK) exhibited good anti-inflammatory and antioxidant activities $in\ vitro$ with SC50 value of 29.13 μ g/mL and IC50 value of 19.6 μ g/mL, respectively. Fractionated extract, ethyl acetate (TKE) exhibited the best anti-inflammatory and antioxidant activities $in\ vitro$ with SC50 value of 21.67 μ g/ml and IC50 value of 17.4 μ g/ml, respectively. The remaining fractions showed moderate and weak activity. The above results guide further research on chemical composition and anti-inflammatory and antioxidant activities in the future of the $Castanea\ mollissima$ in Vietnam.

DOI: https://doi.org/10.54660/IJPGRR.2025.2.2.28-32

Keywords: Castanea, Castanea mollissima, anti-inflammatory, antioxidant

Introduction

Chestnut (*Castanea*) has 12 species, primarily distributed in the temperate regions of the Northern Hemisphere. In Vietnam, there are 2 species. Among them, *Castanea phansipanensis* is an endemic species in Lao Cai, used by the Red Dao people in Sapa, but research on its chemical composition and biological effects has hardly been conducted ^[1]. Additionally, the *Castanea mollissima* is widely cultivated in Son La, Lai Chau, Lang Son, and mainly in Zhongqiang - Cao Bang ^[2]. Chinese chestnuts are one of the famous specialties of Cao Bang, known for their delicious, sweet, creamy flavor, and the quality of Chinese chestnuts is distinctly different from those grown in other regions in terms of water content, glucide, and protein, which create the unique quality of Chinese chestnuts ^[3, 4]. The tree is easy to plant and care for, with high economic value; however, for many years, there has been no scientific research on post-harvest processing into commercial products, and the nuts are mainly used as gifts and for food preparation ^[5, 6].

Research by scientists has shown that extracts and some isolated compounds (including flavonoids, phenolic derivatives, tannins, phenolic acids, lignans, alkaloids, polysaccharides, glycosides, etc.) from species of the genus Castanea exhibit very good biological activities [11-15]. This paper evaluates the biological effects of the *Castanea mollissima* in Vietnam to further elucidate the anti-inflammatory and antioxidant activities of this valuable medicinal plant.

Notably, the leaves and stems of the chestnut (*Castanea mollissima*) are used to treat asthma, bone fractures, pustular boils, and otitis media ^[16]. This indicates that *Castanea mollissima* has good anti-inflammatory and antioxidant effects ^[17]. Moreover, studies on *Castanea mollissima* in Vietnam have mostly focused on identification, listing, description, or summarizing traditional usage experiences, with no research on both its chemical composition and biological activities, especially its anti-inflammatory and antioxidant activities. This paper conducts the first in vitro evaluation of the anti-inflammatory and antioxidant activities of the bark extract of the Castanea mollissima in Vietnam.

Study subjects and methods Study Subjects

The subjects are samples of bark harvested in Chi Vien commune, Trung Khanh district, Cao Bang province in March 2023. They were named by Dr. Truong Ba Phong, from the Department of Biology, Faculty of Natural Sciences and Technology, Tay Nguyen University. The prototype specimen is stored at the Organic Chemistry Laboratory, Tay Nguyen University (Figure 1).

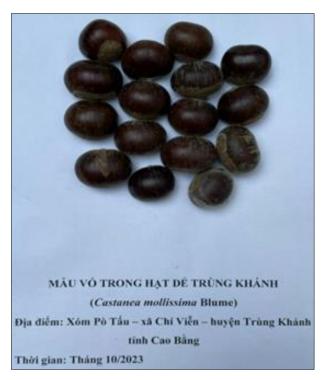


Fig 1: The bark harvested in Trung Khanh district, Cao Bang province.

Methods

Assessment of anti-inflammatory activity via nitric monooxide (NO) production inhibition.

Tested at the Institute of Chemistry of Natural Compounds, VAST

In vitro anti-inflammatory activity test: The in vitro anti-inflammatory activity was evaluated by the inhibition of NO production in RAW264.7 macrophage cells (American Type Culture Collection, Manassas, VA, USA). RAW264.7 cells were cultured using the method of Fumio Amano *et al.* The anti-inflammatory activity on RAW264.7 cells was determined using the Griess method as described by Verena M. Dirsch *et al.*

The specific procedures are as follows: RAW264.7 cells (murine macrophages) were cultured for 48 hours in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), at 37°C, 5% CO₂. Subsequently, the cell suspension was seeded into 96-well plates at a density of 2.5×10^5 cells/well. The cells were stimulated with 2 μ l of control sample (-) LPS (0.1 mg/ml) for 24 hours and treated with various concentrations of test drugs or compounds. Cardamonin was used as a positive control sample (+). The cell culture supernatant was incubated with Griess reagent and NaNO₂ at different concentrations to establish a standard curve. The absorbance of the reaction mixture was measured at a wavelength of λ = 570 nm. Higher levels of NO corresponded to greater optical

density, which was quantified based on the NaNO₂ standard curve and expressed as a percentage compared to the control sample (-) LPS. The ability to inhibit NO production was determined using the following formula:

% Inhibition =
$$100\% - \frac{NO \text{ sample concentration}}{NOLPS \text{ concentration}} \times 100\%$$

Assessment of in vitro antioxidant activity.

Analysis of the ability to scavenge free radicals generated by DPPH (1,1-diphenyl-2-picrylhydrazyl; Brand-Williams *et al.*, 1995, Shela *et al.*, 2003, Kumar *et al.*, 2013) is a recognized method for quickly determining antioxidant activity. The test compound is dissolved in 100% dimethyl sulfoxide (DMSO) and DPPH is dissolved in 96% ethanol. The absorption of DPPH at $\lambda = 515$ nm is measured after adding DPPH to the sample solution in a 96-well microplate. Results of the experiments are expressed as the mean value of at least 3 repeated tests \pm standard deviation (p \leq 0.05). The samples were dissolved in 100% DMSO at a

The samples were dissolved in 100% DMSO at a concentration of 4 mg/ml for crude extract and 1 mg/ml for purified sample. Flavonoid at 1 mM or ascorbic acid at 5 mM in 10% DMSO served as positive controls. Samples were applied onto a 96-well microplate with DPPH solution to achieve final concentrations ranging from 200 µg/mL to 12.5 µg/mL (for crude extract) and from 50 µg/mL to 3.1 µg/mL (for purified sample) in the reaction mixture.

Incubate at 37°C for 30 minutes and measure the optical density (OD) at a wavelength of $\lambda = 515$ nm using a spectrophotometer (Infinite F50, Tecan, Switzerland).

The scavenging capacity (SC%) of free radicals at various sample concentrations is calculated using Excel software according to the formula:

SC% =
$$\left[\frac{\text{OD}_{\text{test}} - \text{OD}_{\text{DMSO}}}{\text{OD}_{\text{control}(-)}} \times 100\%\right] \pm \sigma$$

The standard deviation σ is calculated using the formula by Duncan as follows:

$$\sigma = \sqrt{\left(\sum \left(xi - \overline{x}\right) \wedge 2\right) / \left(n - 1\right)}$$

Determining SC_{50} : The sample (test substance) is diluted into decreasing concentrations, repeated three times at each concentration. The scavenging efficiency against DPPH free radicals for each sample is calculated based on the percentage of free radical neutralization compared to blank and negative control samples. Samples showing antioxidant activity against the DPPH system undergo further steps to determine the IC_{50} value ($\mu g/mL$, $\mu M/mL$). The SC_{50} value is the concentration of the test substance at which 50% of free radicals are neutralized, determined using Table Curve AISN Software (Jandel Scientific, USA) based on SC% values and the range of corresponding test substance concentrations.

Results

Sample Processing

The dried bark of *Castanea mollissima* were finely ground and soaked three times with methanol at room temperature. The combined methanol extracts were then concentrated by rotary vacuum evaporation at low temperature and reduced pressure to yield the totalextract (TK, 167 g). Theextract was subsequently fractionated with n-hexane and ethyl acetate.

After solvent removal, the respective fractions obtained were *n*-hexane extract (TKH, 58 g), ethyl acetate extract (TKE, 45 g), and methanol extract (TKM, 43 g). The masses of the

obtained extract residues from Castanea mollissima leaves are presented in Table 1.

Table 1: The mass of extracts obtained from the Castanea mollissima plant

Component	Weight of dried sample	Weight of the extract (g)			
		Total extract	<i>n</i> -hexan	EtOAc	MeOH
Brak	3,9 kg	167 (TK)	58,0 (TKH)	45,0 (TKE)	43,0 (TKM)

Results of antioxidant activity

The DPPH free radical scavenging activity of the total extract (TK) and segmented extracts: *n*-hexane (TKH), ethyl acetate

(TKE), and methanol (TKM) from *Castanea mollissima* leaves is shown in Table 2 and Figure 2.

Table 2: Results of in vitro antioxidant activity tests from bark of the Castanea mollissima plant

No.	Sample identifier	Free radical scavenging capacity (SC, %)	SC_{50} (μ g/ml)
	Control (+) [axid ascorbic]	$81,12 \pm 0,8$	11,54
	Control (-) [DPPH/EtOH + DMSO]	0.00 ± 0.0	-
1	TK	$59,30 \pm 0,9$	36,12
2	TKH	$60,41 \pm 1,2$	51,35
3	TKE	$76,28 \pm 0,6$	20,65
4	TKM	$31,22 \pm 1,6$	> 100

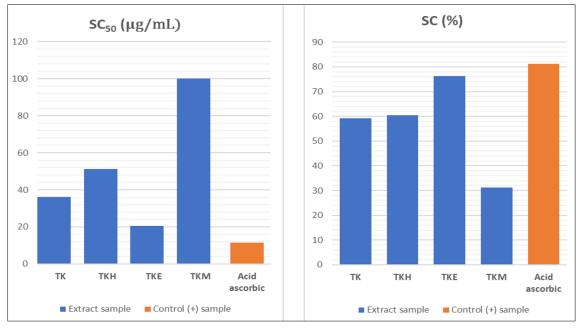


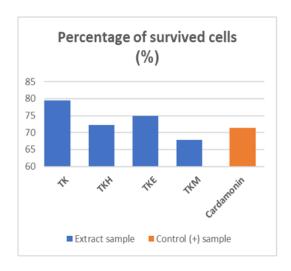
Fig 2: In vitro antioxidant activity from bark of Castanea Mollissima

The results indicate that the totalextract (TK) from *Castanea mollissima* bark exhibited a DPPH free radical scavenging capacity (SC) of 499.20 \pm 0.8%, corresponding to an SC50 value of 36.12 µg/ml. Among the segmented extracts, ethyl acetate extract (TKE) demonstrated the highest antioxidant activity with a SC of 73.24 \pm 0.5%, and an SC50 value of 10.62 µg/ml. Following TKE, the *n*-hexane extract (TKH) showed a SC of 56.45 \pm 1.11%, with an SC50 value of 41.37 µg/ml. However, the methanol extract (TKM) did not exhibit significant activity with an SC of 28.21 \pm 1.3% and an SC50

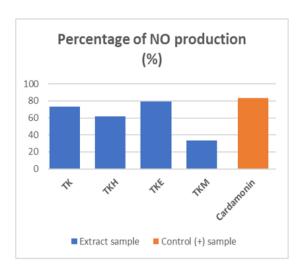
value $>100~\mu g/ml$. Therefore, the active compounds primarily reside in the less polar and moderately polar fractions of the extracts.

Results of anti-inflammatory activity

Anti-inflammatory activity through inhibition of NO production in RAW264.7 macrophage cells in vitro by the total extract (TK) and segmented extracts: *n*-hexane (TKH), ethyl acetate (TKE), and methanol (TKM) from *Castanea mollissima* leaves is depicted in Table 3 and Figure 3.


4

TKM


Highest concentration Percentage of NO Percentage of survived IC50 Sample No. identifier cells (%) tested production (%) value Control (-) $100,0 \pm 0,7$ $102,45 \pm 0,28$ Control (+): 71.33 ± 0.5 $3.0 \mu M$ $83,21 \pm 1,1$ $9,7 \mu M$ Cardamonin $100,0 \pm 0,6$ 0.0 ± 0.3 LPS 20,2 $72,97 \pm 1,4$ 1 TK $50 \,\mu g/ml$ $79,41 \pm 1,2$ μg/ml 50.8 2 TKH 61.87 ± 1.0 $72,31 \pm 0,7$ $50 \,\mu g/ml$ μ g/ml 18,5 3 TKE $78,96 \pm 1,3$ $74,98 \pm 1,1$ $50 \,\mu \text{g/ml}$ μ g/ml

 $33,26 \pm 0,9$

Table 3: Results of in vitro anti-inflammatory activity tests from bark of the Castanea mollissima

 $50 \,\mu \text{g/ml}$

 $67,81 \pm 1,5$

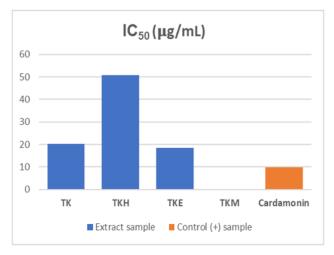


Fig 3: In vitro anti-inflammatory activity from bark of Castanea Mollissima

The results in Table 3 and Figure 3 demonstrate that both the total and segmented extracts from Castanea mollissima leaves exhibited significant inhibition of NO production in RAW264.7 cells at various tested concentrations (p < 0.05). The total extract (TK) showed strong inhibition of NO production with an IC₅₀ of 20.2 μ g/ml and exhibited nontoxic effects on cells (cell viability rate of 79.41 \pm 1.2%). The ethyl acetate extract (TKE) showed the highest anti-inflammatory activity with an IC₅₀ of 18.5 μ g/ml and no cytotoxicity on cells (cell viability rate of 74.98 \pm 1.1%). Following TKE, the n-hexane extract (TKH) had an IC₅₀ value of 50.8 μ g/ml and showed no cytotoxicity on cells (cell viability rate of 72.31 \pm 0.7%). However, the methanol

extract (TKM) showed minimal activity.

Thus, the anti-inflammatory activity of *Castanea mollissima* leaves is primarily concentrated in the less polar and moderately polar fractions, specifically TKH and TKE. Therefore, the TKH and TKE extracts are prioritized for further investigation into their chemical constituents.

Conclusion

The evaluation of anti-inflammatory and antioxidant activities of these extracts from the bark of *Castanea mollissima* showed that the total extract (TK) exhibited strong inhibition of NO production without cytotoxicity to cells, with an IC₅₀ of 20.2 µg/ml. As for the segmented

extracts, TKH and TKE segments demonstrated good anti-inflammatory activity with IC50 values of 50.8 $\mu g/ml$ and 18.5 $\mu g/ml$.

References

- 1. Nguyen Tien Ban. The catalog of Vietnamese plant species. Hanoi: Hanoi Agriculture Publishing House; 2003. II:227–69.
- 2. Nguyen Tien Ban. Classification basis of the Beech family Fagaceae Durmort in Vietnam. J Sci. 2004;26(4A):2–10.
- 3. Tuyen PT, Xuan TD, Khang DT, Ahmad A, Quan NV, Tu Anh TT, *et al.* Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata Sieb. et Zucc. Antioxidants (Basel). 2017;6:31–46.
- 4. Yang F, Liu Q, Pan S, Xu C, Xiong YL. Chemical composition and quality traits of Chinese chestnuts (Castanea mollissima) produced in different ecological regions. Food Biosci. 2015;11:33–42.
- 5. Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, *et al.* Genomics of Fagaceae. Tree Genet Genomes. 2012;8:563–610.
- Zhang L, Gao HY, Baba M, Okada Y, Okuyama T, Wu LJ, Zhan LB. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissima Blume (Chinese chestnut). BMC Complement Altern Med. 2014;14(1):1–9.
- 7. Zhang DS, Gao HY, Wang LB, Li D, Kuroyanagi M, Wu LJ. Flavonol glycosides from Castanea mollissima Blume. Asian J Tradit Med. 2007;25:229–34.
- 8. Gao HY, Wang XB, Xi RG, Sun BH, Huang J, Wu LJ. Structure and absolute configuration of a diterpenoid from Castanea mollissima. Nat Prod Commun. 2010;5(1):13–6.
- 9. You TT, Zhou SK, Wen JL, Ma C, Xu F. Chemical composition, properties, and antimicrobial activity of the water-soluble pigments from Castanea mollissima shells. J Agric Food Chem. 2014;62(8):1936–44.
- 10. Fei W, Xuan Y, Jian X, Yue W, Yuejun Y, Yu J, *et al.* One new phenolic compound from Castanea mollissima shells and its suppression of hepatoma cell proliferation and inflammation by inhibiting NF-κB pathway. Int J Mol Sci. 2019;20(3):466.
- 11. Vaughan JG, Geissler CA. The new Oxford book of food plants. 2nd ed. New York/Oxford: Oxford University Press; 1997.
- 12. Ozcan T, Yilmaz-Ersan L, Akpinar-Bayizit A, Delikanli B. Antioxidant properties of probiotic fermented milk supplemented with chestnut flour (Castanea sativa Mill.). J Food Process Preserv. 2017;41(5):e13156.
- 13. Silva BM, Andrade PB, Valentão P, Ferreres F, Seabra RM, Ferreira MA. Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and jam: antioxidant activity. J Agric Food Chem. 2004;52:4705–12.
- 14. Morana A, Squillaci G, Paixão SM, Alves L, La Cara F, Moura P. Development of an energy biorefinery model for chestnut (Castanea sativa Mill.) shells. Energies. 2017;10:1504–18.
- 15. Squillaci G, Apone F, Sena LM, Carola A, Tito A, Bimonte M, *et al.* Chestnut (Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochem. 2018;64:228–36.

- 16. Basile A, Sorbo S, Giordano S, Ricciardi L, Ferrara S, Montesano D, *et al.* Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia. 2000;71:110–6.
- 17. Comandini P, Lerma-García MJ, Simó-Alfonso EF, Toschi TG. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS. Food Chem. 2014;157:290–5.